If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15(t)+4.9(t^2)=44
We move all terms to the left:
15(t)+4.9(t^2)-(44)=0
determiningTheFunctionDomain 4.9t^2+15t-44=0
a = 4.9; b = 15; c = -44;
Δ = b2-4ac
Δ = 152-4·4.9·(-44)
Δ = 1087.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{1087.4}}{2*4.9}=\frac{-15-\sqrt{1087.4}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{1087.4}}{2*4.9}=\frac{-15+\sqrt{1087.4}}{9.8} $
| 3p-5=-1+2p | | 44=15(t)+(1/2*9.8*(t^2)) | | (-7x-5)/5=(-15) | | 4(x-6)=2x/6 | | 44=15(t)+1/2*9.8*(t^2) | | 4x2+25=20 | | 3(8+3m)=4(m+6) | | 2x^2+162= | | 2(x-3)+2=2(2x-4) | | -6-6p=-6(p+1) | | 3w+7/3=19 | | 4.9t^2+15t-44=0 | | x/6=159 | | -3/5m-9=-6 | | 2+2x+32=x+23 | | 22x-55=22x-55 | | 3(4x+7)=-35+20 | | 5(k-2)-6=5k-(4k-1) | | 2x-5(5x+5)=44 | | 2-x=-x+2 | | 9x6=-5x(10-3) | | x+5/2+x+2/7=1 | | 4x+4x-9=29 | | 5x+3=43-4×+× | | 7x-12=9x-4 | | +1/2x=48 | | 0=12–2p–(2p) | | 5/8x+2=57/16 | | 0=12p-5-(120+3p) | | 1/3x−5/6=−2/3 | | 11=4-3(2x+5)+6x | | 13x−56=−23 |